Dose-dependent effects of aluminum on osteocalcin synthesis in osteoblast-like ROS 17/2 cells in culture.
نویسندگان
چکیده
This in vitro study evaluates the effect of aluminum (Al3+) on osteocalcin, a small protein that is produced by the osteoblast. After stimulation with various doses of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3; 10(-11) to 10(-9) M], osteocalcin was consistently lower in the culture medium of ROS 17/2 osteoblastic cells conditioned with 5 microM Al(3+)-saturated transferrin (AlTR) than in apotransferrin (ApoTR)-treated controls. In a second experiment, cultures were conditioned with various doses of AlTR or ApoTR (1.6-8.0 microM) and stimulated with 10(-9) M 1,25(OH)2D3. High doses of AlTR (4.8-8.0 microM) resulted in lower medium and unchanged intracellular content of osteocalcin than treatment with equal amounts of ApoTR. However, in the same experiment, lower doses of AlTR or ApoTR (1.6 and 3.2 microM) yielded different results, i.e., increased medium and intracellular contents of osteocalcin in the Al(3+)-treated cells. Expression of osteocalcin mRNA was not altered in cultures conditioned with low (1.6 microM) or high (8.0 microM) concentrations of AlTR or ApoTR. Similarly, no effect of Al3+ was observed on total protein content, the rate of total protein synthesis, and the degradation of secreted osteocalcin in cultures conditioned with various doses of AlTR or ApoTR. These findings suggest that AlTR affects osteocalcin synthesis in a specific manner, without concomitant effects on the rate of total protein synthesis or on the rate of degradation of osteocalcin. This effect is dose dependent, i.e., low doses of AlTR stimulate and high doses suppress osteocalcin synthesis and/or secretion, and it appears to be posttranscriptional, since the expression of osteocalcin mRNA is not affected.
منابع مشابه
The Effects of Iron Oxide Nanoparticle on Differentiation of Human Mesenchymal Stem Cells to Osteoblast
Introduction: IIron oxide nanoparticles (IO NP) have an increasing number of biomedical applications. To date, the potential cytotoxicity of these particles remains an issue of debate. Little is known about the cellular interaction or toxic effects of IO NP on differentiation of stem cells. The aim of the present study was to investigate the possible toxic role of different doses of IO NP in di...
متن کاملBiphasic Response to Luteolin in MG-63 Osteoblast-Like Cells under High Glucose‑Induced Oxidative Stress
Background: Clinical evidence indicates the diabetes-induced impairment of osteogenesis caused by a decrease in osteoblast activity. Flavonoids can increase the differentiation and mineralization of osteoblasts in a high-glucose state. However, some flavonoids such as luteolin may have the potential to induce cytotoxicity in osteoblast-like cells. This study was performed to investigate whether...
متن کاملEffects of metal ions on osteoblast-like cell metabolism and differentiation.
The objective of this study was to evaluate the effects of metal ions, which may be released from orthopedic or dental implants, on osteoblast metabolism and differentiation. ROS 17/2.8 cells were cultured in F-12 medium for 7 days. Then Al+3, Co+2, Cr+3, Ni+2, Ti+4, and V+3 were added at concentrations less than their cytotoxic concentrations. After 3 days, DNA synthesis, succinate dehydrogena...
متن کاملEvidence for the functional involvement of protein kinase C in the action of 1,25-dihydroxyvitamin D3 in bone.
In the present study the involvement of protein kinase C in the action of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on osteoblast-like cells and in the stimulation of in vitro bone resorption by 1,25(OH)2D3 was examined. Incubation for 24 h with 1,25(OH)2D3 potently stimulated osteocalcin synthesis by ROS 17/2.8 cells. This stimulation was inhibited (30-70% inhibition) by 25 microM of the protein ...
متن کاملBone Morphogenetic Proteins Stimulate Angiogenesis through Osteoblast-Derived Vascular Endothelial Growth Factor A.
During bone formation and fracture healing there is a cross-talk between endothelial cells and osteoblasts. We previously showed that vascular endothelial growth factor A (VEGF-A) might be an important factor in this cross-talk, as osteoblast-like cells produce this angiogenic factor in a differentiation-dependent manner. Moreover, exogenously added VEGF-A enhances osteoblast differentiation. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 263 6 Pt 1 شماره
صفحات -
تاریخ انتشار 1992